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Anomalous Dislocation Multiplication in FCC Metals
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Direct atomistic simulations of dislocation multiplication in fcc aluminum reveal an unexpected
mechanism, in which a Frank-Read source emits dislocations with Burgers vectors different from that
of the source itself. The mechanism is traced to a spontaneous nucleation of partial dislocation loops
within the stacking fault. Understanding and a quantitative description of this unusual process are
achieved through the development of a continuum model for dislocation nucleation based on the coarse-
grained dislocation dynamics approach and a minimal amount of atomistic input.
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Mechanical strength of crystalline solids is controlled
mainly by the dynamics of dislocations—Iline defects
that carry plastic deformation through the crystal lattice.
In particular, the malleability of metals and alloys is
associated with the well-recognized ability of disloca-
tions to rapidly multiply under stress. A generally ac-
cepted model for such multiplication is the Frank-Read
(FR) source [1], ie., a dislocation segment pinned
between two fixed points. As shown in Fig. 1, when
the stress exceeds a critical value, the bowing out of the
dislocation segment becomes unstable, leading to the
regenerative emission of dislocation loops, each carrying
the same Burgers vector as that of the original pinned
segment. This sequence is viewed as the classical dislo-
cation multiplication mechanism: FR sources are rou-
tinely observed in in situ TEM experiments [2] and the
calculation of their activation stresses is a standard exer-
cise in the continuum linear-elastic theory of dislocations
[3]. An aspect that has not been examined so far, however,
concerns possible effects of the nonlinear dislocation core
on this process.

In this Letter, we present the first direct atomistic study
of FR source operation in fcc aluminum that reveals a
surprising variation to the classical concept of dislocation
multiplication. In particular, we observe that, depending
on the applied stress, a source with Burgers vector b; may
emit dislocation loops with a different Burgers vector b,.
This anomalous mechanism is a manifestation of a strong
nonlinear core effect in fcc metals: it results from the
nucleation of a partial dislocation loop inside the intrinsic
stacking-fault (ISF) area. To obtain further insight into
this peculiar behavior, we develop a dislocation-dynam-
ics-based continuum model whose predictions are in good
agreement with the atomistic results. The model enables
us to examine the physical origin of the anomalous multi-
plication mode, and predicts that it can operate in fcc
metals and alloys with relatively high ISF and low un-
stable stacking-fault (USF) energies [4—7]. Moreover, the
study presents a semianalytical theory of dislocation
nucleation in spatially heterogeneous stress fields that
should be applicable in a much wider context of related
phenomena.
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For our atomistic simulations we use a computational
cell containing 1.15 X 10° atoms with the edges 40[110],
8[111], and 15[112], replicated periodically in all three
directions. The FR source is constructed as a rectangular-
shaped dislocation loop inside an otherwise perfect fcc
crystal. To create the loop, a 4[111] X 5[112] plate of
atoms is removed from a (110) atomic plane. The atomic
configuration is then relaxed through conjugate-gradient
energy minimization under the zero-stress boundary
conditions [8] using the Ercolessi-Adams (EA) potential
for aluminum [9]. The result, shown in Fig. 2(a), is a
prismatic dislocation loop consisting of two edge dislo-
cation dipoles with Burgers vector b; = AB [in standard
Thompson tetrahedron notation [3]; see Fig. 2(b)].
Starting from this configuration, we then investigate the
behavior of the source as a function of magnitude and
orientation of stress applied in the (111) glide plane.

Figures 2(c) and 2(d) show atomistic simulation snap-
shots illustrating, respectively, normal and anomalous FR
operation on one of the two glide planes of the loop.
Figure 2(c) presents a case for which the shear stress is
applied parallel to by, inflicting equal forces on the lead-
ing (outer) and the trailing (inner) partials, with Burgers
vectors b, = A8 and b,, = 8B, respectively, resulting
in the emission of dislocation loops with Burgers vector
b, according to the normal FR mechanism (Fig. 1).

The scenario shown in Fig. 2(d) is remarkably differ-
ent. In this simulation the stress is applied along the [011]
or CA direction, i.e., perpendicular to the Burgers vector

b

b

FIG. 1. Schematics of the Frank-Read (FR) source mecha-
nism for dislocation multiplication (see text).
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FIG. 2. FR source operation in Ercolessi-Adams aluminum.
Only atoms in the dislocation cores and ISF areas are shown.
Orientation of applied stress o and dislocation line senses
(curved arrows) are also indicated. (a) Relaxed prismatic
loop configuration at zero stress. Two mobile (glissile) seg-
ments lie along the [112] direction and dissociate into pairs of
Shockley partial dislocations (partials) on the (111) planes,
while two compact and relatively immobile (sessile) segments
lie along the [111] directions. In this way, the corners of
the rectangular loop serve as pinning points for the glissile
segments, creating two FR sources. (b) The (111) face of
the Thompson tetrahedron (viewed from outside) [3].
(c) Conventional multiplication. (d) Anomalous multiplication.

of the trailing partial. Here, only the leading partial
moves, extending the ISF area until, at some point, a
small dislocation loop nucleates inside the ISE clearing
the fault and restoring the normal fcc coordination across
its area. The Burgers vector of this loop is that of the third
partial in the (111) glide plane [3], b, = &C. After
nucleation, the loop grows in size, clearing the ISF until
its leading segment catches up with the leading partial
b, . Both segments then continue to expand together,
giving rise to the emission of a dislocation loop with
Burgers vector b, = b, + b, = AC, which is different
from that of the original source dislocation, b;. The
remaining portion of the nucleated dislocation loop joins
the trailing partial b, , forming a straight dislocation
segment between the pinning points, with Burgers vector
b; =b, —b, = CB. As a result, the total Burgers
vector is conserved in these reactions, b; = b, + bs.
Moreover, the mechanism is regenerative: after a loop
pinches off, its remnant segment with Burgers vector b,
recombines with the pinned dislocation bs, reestablish-
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ing the initial FR source configuration with Burgers
vector b;.

The minimum (critical) stress required to produce a
full dislocation loop was computed for various stress
orientations in the (111) glide plane. The results are
shown in Fig. 3, in which the stress magnitude (radius)
is plotted as a function of the stress direction angle 6,
measured counterclockwise with respect to b;. As a
reference, the ideal shear resistance of a dislocation-free
crystal was also computed (circles). Consistent with the
notion that the latter provides an upper limit, the critical
stress values for the FR source (diamonds) fall entirely
within the ideal-resistance envelope. The stress reduction
is most evident in the angular range between approxi-
mately & = —30° and 210°, where FR source operation is
responsible for yielding. Only in a narrower range, be-
tween approximately § = 60° and 120°, does the source
operate anomalously [as in Fig. 2(d)]. In the range be-
tween 6 = 240° and 300°, the FR source itself is not
activated, resulting in a critical stress very close to the
ideal resistance.

To clarify the physical origin of the observed anoma-
lous behavior and enable a quantitative prediction of its
activity, we contrast the atomistic results with a contin-
uum model. For this purpose, the atomistic results are
compared to dislocation dynamics (DD) predictions ob-
tained for the same FR source using identical boundary
conditions. We use a nodal-representation DD model [10]
in which partial dislocations and the associated ISF areas
are resolved explicitly [11]. For simplicity we use the
isotropic elasticity solution for the interaction energy
between dislocations, with the elasticity parameters and
the ISF energy y; matched to the EA potential values. For
the only parameter extrinsic to the continuum theory of
dislocations, the core radius r, (see, e.g., Ref. [3], pp. 231—
232), a value of r, =0.173b, (b, =1b, | i=1,23)
is adopted to reproduce the atomistic activation stress
computed for the orientation & = 0°, where the source
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FIG. 3. Ideal shear resistance stress (circles) and FR source
activation stress (diamonds) as a function of stress orientation
in (111) plane. Triangles show FR activation results obtained
from DD model.
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operates normally. The resulting DD activation stress
envelope is shown as the triangles in Fig. 3. For the
orientations in which the atomistic FR source is seen to
operate normally, i.e., from § = —30° to 30°, the atom-
istic and the DD predictions agree quite well. However, in
the angular range where anomalous multiplication is
observed, i.e., for § = 60°, § = 90°, and 6 = 120°, the
results are clearly different. This discrepancy is not at all
surprising, given that the DD model does not allow for
loop nucleation and needs to be informed, through a
nucleation criterion, about conditions under which the
loop formation becomes possible.

To better understand this nucleation process, we first
examine the simpler case of an infinitely long edge dis-
location with Burgers vector b; dissociated into two
parallel partials b; = b, + b, . The equilibrium width
of the ISF is determined by the balance between the
elastic repulsion among the partials, the ISF energy, and
the external stress [3]. Among the six components of the
general stress tensor, the splitting width is affected only
by the Escaig stress, i.e., the component perpendicular to
the total Burgers vector b, in the glide plane (111). When
this component approaches a critical value of ogr =

2y,/ b,, the dissociation width should become infinite. |
1 L
W(L, R, 6; =——— —ubl(2+ 1(—)
( 7r) 8m(1 — V)ILL P2+ »n ab,

1
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where the first term is the energy of elastic interaction
between the two initial partials, the second describes the
self-energy of the incipient dipole, and the third is the
interaction energy of the incipient dipole and both preex-
isting partials. In the dipole self-energy term we assume
that the core radius of the incipient dislocations is propor-
tional to their Burgers vector by the same factor o =
0.173 used earlier. The last three terms represent the work
done by the external stress and the fault energy. Within
this model, dipole nucleation inside the ISF is viewed as a
loss of stability of the initial state (6 = 0, R = 0) towards
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FIG. 4. (a) Schematic representation of variables in model

describing straight partial dislocation dipole nucleation.
(b) Generalized stacking-fault function ygsp(6) for EA poten-
tial. Intrinsic and unstable stacking-fault energies are marked
v; and vy, respectively.

025503-3

For the EA model, this happens at oz = 1.284 GPa.
However, direct atomistic calculations show [12] that
well below that value, at o = 0.93 = 0.05 GPa, a dipole
of Shockley partials with Burgers vector b, spontane-
ously nucleates inside the ISE splitting the initial dislo-
cation into two others according to the same reaction seen
in the anomalous multiplication scenario, b; — b, + bs.

This process is analyzed here within a simple linear-
elastic framework augmented by a nonlinear atomistic
term, in the form of a generalized stacking-fault (GSF)
energy function [4—7], in the spirit of the Peierls-Nabarro
model [13] and an earlier treatment by Saada [14].
The model involves only three variables, as shown
in Fig. 4(a): the separation L between the two initial
partials b, and b, , the width R of the incipient
dipole, and the continuous fractional Burgers vector of
the dipole b, = 6 b, with § € [0, 1]. As & changes from
0 to 1, the area swept by the incipient dipole transforms
from an ISF to perfect crystal. The associated energy
change, per unit area of the fault, is described by the
GSF function yggp(8) along the [112] direction, plotted
in Fig. 4(b). Assuming an Escaig stress o is applied,
the energy per unit length of the dislocation assembly

(b,,, —6b,, 6b, b, ) is then given by
1 1 L+ R
+-—udb3 1 ( >+— 8b31 (—)
2t pnaébp 2717 L= R

(D

R — o0 and & — 1, with increasing og. At a stress just
below the critical value o7, W still contains a metastable
state (6 ~ 0.1, R ~30b,) in which the ISF remains es-
sentially intact. Beyond o7 this minimum becomes
unstable, and a fully developed dislocation dipole
forms spontaneously. This condition occurs at oy =
1.00 = 0.02 GPa, in good agreement with the atomistic
prediction reported above.

Returning to the case shown in Fig. 2(c), we now
consider the energetics of loop nucleation in a similar
setting. To simplify the calculations, we assume that the
incipient loop is a circle of radius R centered at the point
of maximum Escaig stress component inside the ISE and
that the original partials remain fixed during its forma-
tion. The loop energy then becomes
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where the three terms represent the self-energy of
the incipient loop, the fault energy, and the work done
by the total stress, respectively. The latter includes both
the applied stress oy and the internal stress field due to
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the initial partials 7;,(r), which is assumed to be radially
symmetric about the center of the incipient loop. The
function 7, (r) is computed using a DD model that makes
no account of the incipient loop. This is accomplished by
finding an equilibrium position of the preexisting partials
under the applied stress o, followed by the calculation of
internal stress they produce. As before, the nucleation
stress is determined by identifying the onset of an insta-
bility of Eq. (2) as o is increased [12].

For the case of # = 90° in Fig. 3, the above analysis
reveals that at o, = 1.72 % 0.05 GPa, loop formation and
subsequent anomalous source activation become energeti-
cally favorable. This lowers significantly the previous DD
prediction of o} ~ 2.6 GPa and brings it in excellent
agreement with the atomistic result oy = 1.66 =
0.02 GPa shown in Fig. 3. Remarkably, for the 8 = 60°
and 120° cases, the nucleation model predicts that loop
formation is not a necessary stage of source activation,
and occurs only after the source has been activated, again
in agreement with the atomistic observation.

Given the success of the continuum models (1) and (2)
in reproducing the atomistic results, we examined which
parameters are most relevant in defining a material’s
propensity to anomalous multiplication. We find that this
tendency increases with a decreasing ratio between the
maximum slope of the GSF energy function along the rise
between the ISF and USF configurations [see Fig. 4(b)]
and v, as the nucleation stress o becomes smaller than
Osp = 2'y,/bp [12]. However, high stress in itself is not
sufficient: to occur, loop nucleation also requires room;
i.e., the stress should be sufficiently high across a suffi-
ciently large area of the nucleation plane.

The quantitative match between the atomistic simula-
tions and the continuum models also allows us to replace
the EA-based GSF function and probe the activity of the
anomalous multiplication mechanism using a more accu-
rate electronic-structure-based description. This analysis
confirms that anomalous source operation is expected to
be active in fcc Al [5] as well as in Pt [7]. However, even
for these materials, the activation stress is rather high, of
the order of 1 GPa. This implies that, although less likely
to play a role under low-stress deformation conditions, the
anomalous multiplication mechanism is predicted to be-
come important in shock loading and/or nanoindentation
experiments during which such high stress levels are
routinely reached [15]. While explicit experimental veri-
fication remains necessary, anomalous source operation
has indeed been recently observed in large-scale molecu-
lar dynamics simulations of deformation of Al nanocrys-
tals [16], using the same EA potential. The same
simulations revealed yet another closely related behavior
[17]: dislocations were seen to collide with extended ISF
areas, resulting in their perforation by means of the same
partial dipole nucleation mechanism discussed here.

In summary, we have studied FR source operation in
fcc Al using a combination of atomistic and DD simula-
tion approaches. We report that a source can, under certain
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conditions, emit dislocation loops with Burgers vectors
different from that of the source itself. This anomalous
mechanism is driven by the nucleation of a partial dis-
location loop inside the ISE It is expected to be important
under high strain rate deformation conditions and is
accurately described by a simple continuum model that
uses only a minimal amount of atomistic input, the GSF
function. The latter is now routinely computed using the
most accurate ab initio methods, making it possible to
examine a number of related problems, including dislo-
cation nucleation in nanoindentation [13,18] and the com-
petition between dislocation and twinning modes of
deformation [19].
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